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ABSTRACT

A problem of interest in genetics is that of testing whether a mixture of two binomial
distributions B, (k, p) and B (k, 1/2) is simply the pure distribution B (k, 1/2). This
problem arises in determining whether we have a genetic marker for a gene responsible
for a heterogeneous trait, that is a trait which is caused by any one of several genes. In
that event we would have a nontrivial mixture involving 0 < p < 0.5 where p is a
recombination probability.

Standard asymptotic theory breaks down for such problems which belong to a class
of problems where a natural parameterization represents a single distribution, under the
hypothesis to be tested, by infinitely many possible parameter points. That difficulty
may be eliminated by a transformation of parameters. But in that case a second problem
appears. The regularity conditions demanded by the applicability of the Fisher Information
fails when k > 2. We present an approach where use is made of the Kullback Leibler
information, of which the Fisher information is a limiting case.

Several versions of the binomial mixture problem are studied. The asymptotic analysis
is supplemented by the results of simulations. It is shown that as n --+ oo, the asymptotic
distribution of twice the logarithm of the likelihood ratio corresponds to the square of the
supremum of a Gaussian stochastic process with mean 0, variance 1 and a well behaved
covariance function. As k -+ oo this limiting distribution grows stochastically as the
square root of log k.

AMS 1980 Subject Classifications Primary 62F05, 62P10; Secondary 60G15

Keywords and Phrases asymptotic distribution, likelihood ratio, extreme values, mixture,
genetic marker, heterogeneous trait.
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1. Introduction.

A problem of interest in genetics is that of testing the hypothesis that a mixture of

two binomial distributions Bi(k,p) and Bi(k, 1/2) is the degenerate case of the single

binomial Bi(k, 1/2). This problem arises in determining whether there is a marker for a

genetically heterogeneous trait, i.e., a trait that can be caused by a mutation at any one

of several different loci. For parametric hypothesis testing problems it is customary to use

the generalized likelihood ratio as a test statistic. Under standard regularity conditions, a

classical result of Wilks (1938) states that if the hypothesis is true, twice the logarithm of

the likelihood ratio has, asymptotically, a chi-square distribution.

The regularity conditions are not satisfied for our mixture problem. Moreover, under

the parametrization ordinarily used for this type of problem, the hypothesis, which is

simple and uniquely determines the distribution of the data, corresponds to an infinite

set of parameter points designating the mixture fraction and the probability p. This

complication may be eliminated by introducing an alternative parametrization.

For the case k = 2 with this reparametrization, most of the regularity conditions

are satisfied, and a generalization of the Wilks result (Chernoff, 1954) establishes that the

asymptotic distribution of twice the logarithm of the likelihood ratio is a mixture of three

distributions, two of which are those of chi-square with one and two degrees of freedom.

However, for k > 2, the regularity conditions no longer apply.

For this special problem, the distribution of the likelihood ratio can be determined by

simulation. However, asymptotic theory is useful in understanding generalizations of our

problem. One generalization is for the model where independent observations correspond

to different values of k. Another is when we wish to test that a mixture of Bi(k, p ) and

Bi(k,P2) with unknown p, and P2 is really a single binomial. We shall analyze the

first of these generalizations. These problems belong to a large class of problems where
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regularity conditions fail, and include mixture problems discussed by Ghosh and Sen (1985)

and change point and segmented regression problems treated by Feder (1975).

The main idea behind our approach is that the Fisher Information which characterizes

the behavior of the maximum likelihood estimate (MLE) degenerates in problems which

lack regularity. However, the Fisher Information is a limiting case of the Kullback-Leibler

(KL) Information, which is the expectation of the likelihood ratio, and is the natural

measure of the ability to use data to discriminate between alternative hypotheses. The

study of the KL Information for nearby alternatives clarifies what constitutes appropriate

parametrizations and the asymptotic behavior of the likelihood ratio as well as the MLE.

In our problems we shall express the asymptotic distribution of the logarithm of the

likelihood ratio in terms of the maximum of the square of a relatively simple Gaussian

stochastic process.

In Section 2 we present formal statements of several problems and the appropriate

parametrization. In Section 3, we discuss the asymptotic distribution under the null hy-

pothesis for the case of k = 2. In Section 4, the asymptotic distribution for the case of

arbitrary k is derived. In Section 5, extensions of these results are presented to include

several values of k, a restricted version of the problem where p > 1/2, noncentral results

and large deviation results. Derivations appear in an appendix. Section 6 presents results

of simulations comparing asymptotic and finite sample distributions.

The main asymptotic result is that under the null hypothesis, twice the logarithm of

the likelihood ratio behaves like the square of the maximum of a stochastic process in a

variable 0, and for each value of 4, the process has mean 0 and variance 1. The problem

discussed here is a special case of a more general theory which applies to mixture problems

and change point problems. The most general discussion to data, one which applies to

mixture problems and would include our problem as a special case, is due to Ghosh and

Sen (1985).
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2. Problem Statements and Reparametrization.

We present a formal statement of the problem and several variations. In what follows

L(X) stands for the distribution (law) of X and £(XIY) is the conditional distribution

of X given Y. The distribution and expectation for a given value of the parameter 0

are represented by £ and E,. The binomial distribution corresponding to k trials with

probability p is designated by Bi(k, p) and N(ju, E) represents the normal distribution

with mean p and covariance matrix E. The chi-square distribution with m degrees of

freedom is written £ (xr).

PROBLEM 1. Let X 1 ,X 2 ,...,X,, be i.i.d observations on a random variable X for

which the distribution

L.(X) = aBi(k,p) + (1 - a)Bi(k, 1/2) (2.1)

where cx and p are unknown and 0 < a < 1 and 0< p_ : 1. The hypothesis,

Ho : p = 1/2 or a = 0, is tested using the likelihood ratio test. Assuming Ho is true

what are the distributions of the likelihood ratio and the maximum likelihood estimates

of a and p?

PROBLEM 2. Let X 1 , X2, ... , X,, be independent observations where

L(X,) = aBi(k,p) + (1 - a)Bi(k,,1/2),

the k, are known, nA = n~k is the number of times k, = k, EXAk = 1, 0 < p: _1 and

0 < a < 1. The hypothesis, Ho,: p = 1/2 or a = 0, is tested as in Problem 1.

PROBLEM 3. Consider the variations of Problems 1 and 2 where p is restricted by

0 < p < 0.5. These variations are those most relevant for the application to genetics.

There, p represents the recombination fraction of a proposed marker to one of the loci
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for the trait and achieves a maximum value of 1/2 when there is no linkage. Furthermore

k represents the size of the family studied and may vary from one family to another. We

will refer to these variations as the one sided cases.

PROBLEM 4. Consider the variation of Problem 1 where

£.X) = aBi(k,p,) + (1 - a)Bi(k,p2 )

with pl,p2 and a unknown, O<pl 51, Op2 _ 1, 0 < a < 1. It is desired to test

the hypothesis Ho: pl = P2 or a= 0 or 1.

Under H. in Problem 1, £(X) = Bi(k, 1/2). The same distribution applies when

p = 1/2, no matter what the value of a is, or when a = 0, no matter what the

value of p. In effect the hypothesis Ho, which corresponds to {(a,p) : a = 0, 0 <

p :5 1} U f(a, p) : p = 1/2, 0 < a < 1}, really corresponds to only one point in the

space of distributions. Thus a more "natural" parametrization should have only one point

correspond to the above set. We offer, as an alternative, the following parametrization

which will prove convenient. Let 0 = (01,02 )T (the exponent T is used for transpose)

where

61 = a(p- 1/2)

02= a(p - 1/2)2 (2.2)

then

a = 402 /02 (2.3)

and

p= 1(1+ 02)=(1+0)/2 (2.4)

where

--=02 /01 =2p-1 .(2.5)
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In the new parametrization, H, corresponds to 0 = 0 or, equivalently, 61 02 = 0.

The range of (01,02) lies between the line 02 0 91 and the parabola 02 - 402 for

01 1/4 and between 02=-01 and 02 402 for -1/4 01 _0. Note that

02 _ 0 and 4 ranges from -1 to 1, and has the same sign as 01.

In terms of the new parametrization, the probability density of X is
(k l2 1+ L2 y -1_! - 0,1,..k

f (X, 0) = 2- kl 020 '

and

f~x,O) = 2A;(k) I z=0,1,1...,Ik.

The likelihood ratio is

V(X,0) = 1+u(X,)- =f(Xo ) = + 1 o2 t 11 (2.6)
f (X1 0) 0 2  'A0 1  1)9 /

We may write

u(x, 8) = 4OlPk1P ) (2.7)

where
Pkz(4 ) - (1 + )" (1 - k -1 (2.1

Pk (2.8)

is a polynomial of degree k - 1 in qS.

The logarithm of the likelihood is

£n(f(X,)If(X,O)] = n[l + u(X,0)].

The Fisher Information is defined by

J(O) = Ee{ltnf (X, ] [8tnf O] } (2.9)

where a/a0 represents the column vector whose components are the partial derivatives

with respect to the components of 0. The Kullback Leibler Information is

K(,90) = Ee{tn[f(X,)/f(X, 0)]}. (2.10)
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3. Asymptotic distribution of likelihood ratio when k = 2.

For Problem 1, the case k = 2 becomes relatively simple. There, we have

f(o, o) = 0.25 - 201 +2

f(1, 0) = 0.5 - 202

f(2,0) = 0.25 + 20, + 02 (3.1)

We observe data on a multinomial distribution with three probabilities depending linearly

on two parameters. The Fisher Information is easily calculated and

J(O) = 32 0) (3.2)

Let i. be the MLE unrestricted by the restrictions on the range of 0. Standard theory

tells us that when 0 = 0, Lo (VJ0) -- N(0, J-'(0)). Applying Chernoff (1954) with the

restriction on 0, it follows that L = In (likelihood) satisfies

Lo (2L) -- (xl) + 2. (x) + - 2)L(Y1
2 10 < Y2 < /2Y 1 ) as n --+ oo, (3.3)

where L (X2) is the chi-square distribution with m degrees of freedom, Y and Y2

are independent N(O, 1) random variables, and

1

A = - arctan(I/v2) = 0.098 (3.4)
72r

Alternatively, we may write

Po{2L < x)- ['(v) - ] + 2X[1-e - /2] + 2 f 0(t)[t(v/2t) - 1]dt (3.5)

where 4 and A are the density and cdf for the N(0, 1) distribution. Some detail is

presented in Appendix 1.

In Problem 3, a similar analysis involves a further restriction on 0. There, 0 is

restricted to the right half of the range of 0 for Problem 1. Here
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,o (2L) -- +e(,) + 1 ,(x;) + (- (3.6)

where £(O) is the distribution which attaches probability one to the value 0.

4. Asymptotic distribution of likelihood ratio for arbitrary k.

By relating the likelihood ratio to its expectation, the Kullback Leibler Information,

we shall show that for specified 4 = 02 /01, twice the logarithm of the likelihood ratio is

simply expressed in terms of S(Z, 4) where S(Z, 4') is a polynomial in 0, linear in Z,

and Z is an asymptotically normal vector random variable. The resulting characterization

of the distribution of the likelihood ratio involves maximizing with respect to 4.

4.1 The Kullback Leibler Information.

First let us evaluate the KL Information based on a single observation for Problem 1.

Let

U=U(X,)=0L{(1+ O)X(1 4')kX -1} 40,PK. (4.1)

Then, for 0 = o(1),

K(O,9) = E.{-tn(I +U)}=E,,-U+ 1 }U2 + o(0)

But we can see, without calculating that

E(U) f(X,) 1] = 0, (4.2)

and hence

E. f(1 + 4)x (1 -,0)k - X = 1.

However, to evaluate E. (U 2 ), we must calculate

Eo{1(1+ Offx(1-_ )2(k -X)} 2- 1 (-.-)"(1-q0)2 (k- x)]

X=O

(1+ 4')2 + (1 0)2]k +
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Thus

E2(U2 ) = [6-3 L(1 + 02)1 - = 16e Pkk ( 2)

And
K(0, ) = 882Phk (02) + o(02). (4.3)

Applying the additivity of KL Information, we have

LEMMA 1. For Problem 1, the KL Information K(O,e) is 8n[02 Pkk (02) + o(02)1. For

Problem 2, it is 8n[021EKpkk( 2 ) + o(0t)k.

The form of K(O, 0) suggests the importance of 01 in our reparametrization. For k =

2,K(0,0) ;, 1602 +802 = "0T J(O)0. However, for k = 3, K(O,0) - 2402 + 2402 +804/02

which does not behave well as 01 and 02 approach zero. The lack of regularity for k = 3

is associated with this "poor behavior."

4.2 The likelihood ratio for Problem 1.

Let us assume in Problem 1 that Mi of the n observations have Xi = j. Then M =

(Mo, M1,...,Mk)T has a multinomial distribution, and from the central limit theorem it

follows that M = nf(j, 0) + 1 fiZ where

,Co(Z) -- N(O,,) as n--+oo (4.4)

and

= IIoill = Ilf(i,o)6,i - f(i,o)f(j,o)I, i,j =0,1,...,k (4.5)

with 6,. = 1 if i = j and 0 otherwise. The logarithm of the likelihood ratio is

L = sup L(O) where, for 0 =0(n- 1 / 2 )

L(O) = Y{nf(,O) - 1/(Z j })n[1 + Z, Uj)

_ {nf(J, )u(j, ) - 2 (, ,)] + I/iIZ u~j,8)} + opel)-

- -80 P( 2 )'n + 4V/-n01S(Z,4 ) + oP(1)
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where

S(Z,4) = EZipk,(o). (4.6)

For fixed 0, the maximum of the main terms of L(O) is attained at

01 = S(Z,0)/4VNPk(0 2 ). (4.7)

However, since 02 > 0, 61 is restricted to have the same sign as q5, and the maximum

over this restricted range is 1T 2(0) where

T(Q) = max[0, sgn(])S(Z, ) (4.8)

Thus

2L= sup T 2 (4)+ o(1). (4.9)

and we have established

THEOREM 1. For problem 1, the asymptotic distribution of twice the logarithm of the

likelihood ratio is that of sup,1~<,5 T2 where T(O,) is defined in (4.8) with L. (Z) replaced

by N(o, E).

4.3 The Stochastic process S(Z,4,).

In Problem 1, the limiting distribution of L under H, is determined by the fact that

L. (Z) --- N(O, E) as n - oo. By a continuity argument, this limiting distribution may

be obtained by assuming, as we shall in this subsection, that L(Z) = N(O, E). Then the

stochastic process S(Z, 4) is a Gaussian process which may be expressed as a polynomial

of degree k - 1 in 0, i.e.,

k k

S(Z,4,) = EZjpk.(o) = 1W,''. (4.10)

The distribution of S is described in
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PROPOSITION 1. The coefficients Wi are independent normal random variables with

mean 0 and variance ("). The process S(Z,6) has mean 0 variance Pk(-02 ) and

autocorrelation

p(01,2) = Pkk(0.1 )/[Pkk26 )Pk( 2)]. (4.11)

Proof: The W are linear functions of the Zj and hence have a multivariate normal

distribution with mean 0. Also E(S(Z, 0)) = 0. Then

k k

E[S(Z,01 )S(Z, 2 )] = P,(4l)o,;Pj( 2) = > ¢7'E(Wrwj)Oj-4 (4.12)
i,j=O i,j= 1

But

EP1,k(0)u,;Pk(P2 ) = >:Pki(01 )Pki(2)f(i,0)

- ki 0. )f (i, 0)][ Ph ('0 2 )f (j, 0)]

Pk i(O)f(i,O) "2- k(k) [(1+6) (1-0)- 1] =0

6 1

X [(+602)i(1-62))- - 1 ]

A k. (0 1 '0)

The representation (4.11) for the autocorrelation follows. Equating coefficients in (4.12),

it follows that EWtwj = 0 if i: and EW 2 =(k).

One consequence of Proposition 1, is that the stochastic process S(Z, -) / NPk k(02),

which is so important in T(0), is (asymptotically) a Gaussian process with mean 0 and

variance 1 for each value of 4-
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5. Generalization, extensions and comments.

In this section we point out that the results for Problem I extend easily to Problems 2

and 3. These results are associated with the behavior of the maximum likelihood estimates

of the parameters of the model which resembles that of easily derived the moment method

estimates. A geometric interpretation of these results is presented.

Problem 4 may be treated along similar lines requiring a more complex analysis which

will not be presented here.

Results are presented for the noncentral case where the hypothesis is almost true and

for the restricted problem where the alternative hypothesis restricts p to be substantially

removed from 0.5. The latter problem is relevant for the genetic application where we

expect a strong linkage, if any, between the marker and one of the loci involved.

Finally, it is pointed out that the logarithm of the likelihood approaches infinity as

k -+ oo. The rate of convergence is very slow, of order of magnitude of (log k) 1/2 .

5.1 Problems 2 and 3.

A straightforward extension of the argument for Problem 1, yields

THEOREM 2. If nk/n --, AA as n --+ co it with EIAk = 1, the limiting distribution

of 2L under H,, in Problem 2 is £ [suP1, <I{T2(0)1] where

T(O) = max[0, sgn(O) E, IC i (5.1)

and p(0 2 )_ E= pXKpk(0 2 ) and the Wk, are independent N(0, (')) random variables.

For Problem 3, the only change in the results for Problems 1 and 2 is that the supre-

mum of 7P (4') should be taken over the domain -1 < 4 0 which corresponds to

0 < < 0.5.

Problem 4 is more complicated to handle because it involves 3 parameters. We will

not elaborate on it here, but it is subject to a similar analysis where the first stage of the

maximization of the likelihood is with P1 - P2 kept fixed in place of 4'.
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5.2 Maximum likelihood and moment method estimates.

Returning to Problem 1, the results are associated with an implicit characterization

of the MLE estimates. Here 4 is the value of 4, which maximizes T2 (4,),

1 S(Z, ,) (-/2

and
lc.V/-o,) - Isgn( )Y( )]

4 pk k (4,2

While 0 , = ,(n- 1/2), the estimate 4 varies between -1 and +1. This is not especially

surprising since 46 is not identified when H, "olds.

Appendix 2 presents a derivation of the asymptotic properties of the unrestricted

moment method estimator j. of 0. This derivation is relatively simple and the results

were useful originally in clarifying the situation in Problem 1. It is seen that Lo(/-n~i) =

N(O, E.) where E. is a diagonal matrix with diagonal entries (16k) - ' and (8k(k-1)) - l.

It follows that the 4. = 92. /j, has a limiting Cauchy distribution.

There does not seem to be a standard convention for modifying k, to j in order

to conform with the restriction. It seems natural to use some sort of projection, in which

case would behave like the mixture of a truncated Cauchy with a probability of 0.5 at

0 =0.

5.3 A geometric interpretation.

Appendix 1 and Section 4 present the results for k = 2 in Problem 1 in different

ways. A geometric interpretation of the results of Section 4 relate these. The expression

S(Z,4,) _ gn )j=k W.4' - 1

T, (4,) = sgn (4) S( -sgn(4i)
Ph ; (2) /Pf (2)

can also be written
k

T, ( ) Y gi(,) = yTg/V j

i= 1
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where the components of g are

=i sgn (0) k 12=

and JZ(Y) = N(O, I). Thus if T (4)) is positive, it may be interpreted as the length of

the projection of Y onto the ray from the origin through g.

Consider the "cone" made up of all of these rays as 4) varies from -1 to +1. This cone

is a two dimensional surface in k dimensional space. For k = 2 , that surface is simply

the angle between the horizontal axis and the line with slope 1/Vf and the reflection

of that angle about the vertical axis. Our asymptotic expression for T2 is the squared

length of the projection of Y onto this surface. The MLE corresponds to the ray on

which the projection falls and V /0 1 is the ratio of the length of the projection to four

times the length of g(o).

5.4 The noncentral case.

In regular problems, the limiting chi-square distribution of the Wilks result becomes

a noncentral chi-square when the hypothesis is false but the true value of the parameter

is close to the set of parameter values under which the hypothesis is true. In Appendix 3

we derive the following analogous result for Problem 1.

THEOREM 3. In Problem 1 let the true value 00,, of the parameter be n-1/2 (0*1 ;)T

for fized 0, and 0; =40"1 . Then

Le.. (2L) --+ L I sup T*2 (0))

where

T* () - max[0, sn(- ) ) I ,

k

S*(Z40) = :
1-1
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and the W are independent with

N N(4(')e;(t)'l)

When the true value of 0 is 00 which is substantially different from 0, we have

what may be called the large deviation case. Then the distribution of the logarithm of the

likelihood behaves like N(Nk(0o, 0), nV (0o)) where

K(Oo,O) = EeO {1nhf(X, Oo)If(x,o)I}

and

V(0o) = Vare o {tn[f(X, Oo)lf(X,0)}.

5.5 The restricted problem.

If we restrict p to be in the interval 0< p !5 p* < 0.5, then -1< < Y -

2p* - 1 < 0, and we have

LO(2L) --, Lmax0, Sup (S( ,Z)]}

For the special case k = 2, the analysis of Appendix 1 is easily extended to yield the

closed form limiting distribution,

Lo(2L) -, 2(x ) +(qS)L(x])+ (1 _ x()) L(O).

where

= arctan(l/IvF2) - arctan(-OiIvr2)]/27r

is the angle between 0 = 0* and 4, = -1 after a normalizing transformation of the

(01,02) space.
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5.6 Limiting behavior as k -+ 00.

In the limit as n -- co, we deal with the supremum of a Gaussian process with mean

0, variance 1 and the autocorrelation function p(10 1 , 02) in (4.11). We shall show that

as k gets large neighboring values of the stochastic process becomes almost independent

and hence the supremum resembles that of many i.i.d. N(O, 1) random variables and

approaches infinity. As we shall show, this approach is of the order of (logk) 1/2 which

grows very slowly with k.

To demonstrate the almost independence, consider 0, and 02 = 01 + 6 where 4,

is bounded away from 0, kW2 __ c while kb 3 -- 0, e.g. k = 6-2/3. Then a careful

expansion yields
-k 2

£n p2(, 1,4, 2 ) = (1± 4,)2 +0(1) -- -00

and p(o,,1 + +) -+ O.

This analysis suggests the transformation u = k1 /204 for -1 < 0: 0 0, so that as

k --+ o

P(0,0+ (1 + 0, 10 2) l -_1_ "_"-1

+ 02)k - 1][(1 + 02])k -1])1/2 [(eu] - 1)(eu' - 1)]1/2 - Pi(U1,u2)

where

p1(u1 + a,U2 +a) 2p2 (ul -u 2) =C - I(" u2-  (5.2)

as a -* oo. Our stochastic process converges in law to one with autocorrelation function

pl. Here P2 is the autocorrelation function of a stationary Gaussian stochastic process

for which the asymptotic properties of the supremum are well known. In Appendix 4

we show that this supremum, which, over the interval 0 < u < k/ 2 , is (log k)1 / 2 +

0, (1)(log k)- 1/ 2 , dominates stochastically that of our limiting process determined by p1 .

Two points are worth noting. First, with large probability the supremum for the

process corresponding to P, takes place for large u, and is, in the limit, stochastically

equal to that for P2. Second, our asymptotics involves a double limit. First we let n --+ co

15



and then k --* oo. In practice both k and n are finite, and for large k, very large n

is required for the asymptotic normality to be meaningful for 0 somewhat distant from

0, i.e., p removed from 0.5. We shall not elaborate on this point except to remark that

informal calculations suggest that our approximations through the asymptotic theory lead

to estimates of the quantiles of 2L that are conservative in the following sense. They are

somewhat larger than for finite k and n and their use would suggest larger P values

than the true values.

6. Simulations

In this section we compare various asymptotic and finite sample distributions for twice

the logarithm of the likelihood ratio. With a few exceptions for k = 2, the asymptotic

distributions are not expressed in simple closed form and hence were calculated by simula-

tion. We present various estimated quantiles for each distribution. The calculations were

based on 10,000 simulations each, and so the standard deviation of the estimate I. of the

quantile zq would be (0.01)[q(1-q)/f 2 (zq)]1/ 2 . Since the density of f(z,) is ordinarily

not known, an interested user of the tables could crudely estimate it from the table. Since

the finite sample distributions are actually discrete, there is some indication of granularity

for small n and q close to one. Table 1 does not reveal this granularity and its effect on

the standard deviation of our estimated quantiles, for which coarse approximations can be

inferred from the limited data presented here. From a sample of 10,000,only crude results

can be expected for estimating the 0.999 quantile based on the 10 largest observations, an

estimate which usually has a relatively large standard deviation.

Table 1 presents the quantiles and estimated quantiles in the following order. First

the asymptotic case (n = oo) for the one sided problem (s = 1, 0 < p < .5) is tabulated.

Then a couple of cases for the two sided problem (s = 2) are listed. Thereafter all entries

correspond to the one sided case. The finite sample results are listed. A few examples of

the mixed case with two values of k are given. In the asymptotic version the value of n
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is replaced by the ratio \ 1 /1\2 . In the finite sample version n,, n2 is used for n and in

both cases k, : k2 is given for k.

The noncentral asymptotic case lists the value of p and 0= r9-- 1 . For the finite

sample versions, the corresponding values of a are also listed. Then the restricted case

is tabulated in the asymptotic and finite sample size case. The table concludes with the

quantiles for chi-square with one and two degrees of freedom and (.01)[q(1 - q)#1/ 2 to

help compute standard deviations.

The entries in Table 1 were culled from a more extensive list of simulations to provide

the reader with some ability to make meaningful comparisons without the benefit of sensory

overload.

The asymptotic results of Table 1 show that 2L grows slowly with k. For k = 40, 2L

for the one sided problem is still stochastically smaller than chi-square with 2 degrees of

freedom. For the two sided problem 2L tends to be little larger, which is to be expected.

The finite sample estimates give lower quantiles than the asymptotic values. Thus the

asymptotic values are conservative in the sense that they would lead to overestimating the

P values of the test. The values of k and n in our simulations are not sufficiently large

to exhibit the asymptotic behavior for large k except in the crudest fashion.

Except for the unreliable 0.999 estimated quantile, the mixed distribution is remark-

ably insensitive to the mixture proportions, yielding quantiles close to those of the unmixed

larger k values.

For the noncentral asymptotic distributions a difference in the value of p seems

to lead to an effect which is largely that of a translation. For k = 2, the asymptotic

distribution is a good approximation for sample sizes of n = 20 and 40. However for

k = 10, the asymptotic distribution has 2L much larger stochastically than it should

be for the sample sizes n = 20 and 40. This effect, which suggests an unduly optimistic

estimate of the power of the test, is due to the fact that the central limit theorem takes

effect rather slowly when k is substantial and p is far from .5. Then -0 is relatively
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large and S(Z, 4) tends to have a large kurtosis. Presumably this approximation would be

good for very large sample sizes, much larger than appropriate for our genetic application

when k = 10.

Finally, for the restricted problem, and the values of p, the asymptotic distribution

(under the hypothesis) seems to be as expected, stochastically smaller than that for the

unrestricted case. However this reduction, in not large and becomes a little larger as the

sample size diminished.

Table 2 presents K(00 , 0) and V(0o)1/2 which can be used with a central limit theo-

rem approximation to estimate the quantiles for the finite sample version of the noncentral

distribution. In fact the highly right skewed distribution of 2L is such that the normal

approximation is not very good in the right tails. In the more crucial left tails, it is much

better, but still leads to conservative estimates of the power function by overestimating the

error probability of tests for the noncentral case. This overestimate is due to the natural

truncation of the real distribution of 2L at 0.

APPENDIX 1. Details on the case k = 2.

If we introduce the transformation 0* = V/3i0 1 and 0; = 402, then the unrestricted

MLE 0: of 0" satisfies

Lo )-. N(0,1)

but the set of possible values of 0* is the union of the region, between 02 = 0 V2

and 9 = 9t2/2 for 0 < e* _ V2, and its reflection about the 0; axis. In the

neighborhood of 0" = 0, this set is approximated by the region, between 9; = 0;/V/2

and 0; = 0 for 0; > 0, and it reflection. Then 2L behaves like the difference between

the squared distance of vii to the origin and to the above set. When v/n'2, < 0,

this difference is (Vfl; )2 and contributes C (xl) to the asymptotic distribution of

t 0 (2L). Here i2 = 0 and k, -t i%. When i., is in the restricted region 0* = 8.,

18



and the squared distance to the origin is U this contributes 2 with probability

determined by the proportion of the region covered by the restricted region, i.e., 2A where

A = (21r) - Iarctan(1/vf2). In the remaining region, the squared distance is the squared

length of the projection of Vf/i. onto the nearer of the two lines 0e = -10 /v2. Since

the projections of Vf0:, onto 0; = 0= e/vf and onto the direction vertical to it are

independent N(O, 1) random variables, we can represent this contribution by

Equations (3.3) - (3.5) follow readily. For Problem 3, a similar but somewhat simpler

analysis yields Equation (3.6) after it is noted that for a proportion (1/2 - A) of the

region, the closest point from V/;-iu, to the restricted region is at the origin.

APPENDIX 2. Estimation of the parameters by the method of moments.

We estimate the parameters of Problem 1 by matching the first two sample moments

with the theoretical moments. We calculate

A, = E(X) = akp + (1 - a)k/2 = k(201 + 1/2)

A2 = E(X 2 ) = k[ap + (1- a)/2] + k(k- 1)[ap2 + (1- a)/4]

= k(20 1 + 1/2) + k(k - 1)(0 1  + 201 + 1/4)

$I = r$[I, 1 12 k 2l

O k(k - 1) +

By the Central Limit Theorem

1= Ex, = A, + Z

19



where £(Z1 ,Z 2 )--+ N(O, *), E" = I1:3-II, and o:, = ,+ - ,j, with ,i, = E(X').

Under the hypothesis H., £(X) = Bi(k, 1/2), and 1"1 = k/2, 142 = (k + k2 )/4, A3 =

k2 (k + 3)/8 and At4 = k(k 3 + 6k 2 + 3k - 2)/16. Then o* =k/4, U'2 = k 2 /4, and

U; 2 = k(k + 1)(2k - 1)/8. Applying the method of moments and ignoring the restrictions

on 0, and 02 yields the estimates

1U= 1 -[X = Z n- 1/2

and
-2u = n - V -1 1 2

k(k-1) k 4 k(k-1)

where E{ZI (Z2 - Kzl)} = O2 - kac1 = 0 and hence

£(V )-N(,.)

with E. a diagonal matrix with diagonal elements oa /4k2 = (16k)- 1 and (a;2 -

ko.2)/k 2 (k- )2 = [8k(k- 1)]- 1 . Thus j2. = 02 /1. has a limiting Cauchy Distribution

with scale parameter a where a2 = 2(k - 1)- 1

APPENDIX 3. The noncentral case.

Let the true value of 9 be 00, = n-1/ 2 (O,O9) where 0 = '0. We recapitulate

the derivation of Section 4 for this case. We have

M = nf(j, Oo) + VfnZj

where once again, as in (4.4), £o.. (Z) -+ N(0, E) as n -+ oo. Then, for 0 - On 1/2),

L() = E(n(j,8o.) + V /iZ.)tn(1 + u(j, 0))
i

= E{nf(i, Po.)[u(i,0) -. 2 (j,o)] + V Z,(j,,)} +o(1).
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The first part of the above expression being summed is

Aj =n 2
- k {1 + P (,0)4iP . () IP(

the sum of which can be expressed in terms of sums of the form

ar. Z -2 (') (1+ 0),i (1 + ey (1 - -

-- { [(1l+ 0 *) (1l+ 0 ) +  ( 1  _ *)r (1 - ])2]12

where r = 0 or 1 and s = 0,1, or 2. The two terms of Aj without 01 were already

summed in the previous derivation and contribute -8no0Pkk (4,2). The remaining terms

yield

a l al - ao, + aoo 1 2 fn (a1 2 - a02 ) - 2(a1 - ao 1) + (alo - ao )16 0 10 1 01 - 3 0 1 10 k

But aoo = ao = ao = 1 and with some calculation we have

V/'{160 01 PA,; (4,* 4,)- 3290 1 Qk (0o, 04)}

where

QA; (0*, 0) ={[(l + 0 2 + 200'*)k _-(1 + 0b2)k - 2[(1 + 0b*0)" _ 1]}/0b*0 2 .

For fixed 4 we maximize, with respect to 0, subject to 01 4 > 0, the main term of

L(O,) = -0 {8nPkA (4,2) + 320; V4nQk (, , )} + 40, v/S* (Z,,) + o, (1)

where

S'(Z, ) = s(Z, ) + 401 Pkh( )

= Wj4 +49 40 4  =or I W'j21
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and the relation of W to Z is the same as in (4.10) and the limiting distribution of WO

is that of independent normals with

lime,, (W,) = N (40 0) (0)~

The maximum of the main term of L(4) occurs at 01 = 0 or at

01 .S(Z' 0)
4i=Pkk (42) + 0(1)

if S" (Z, 0) has the same sign as q. Then

2L(O) = T*2 (4) + op (1)

and Theorem 2 follows.

APPENDIX 4. The case of k --+ oo.

We shall show that p, and P2 defined in Section 5.6 satisfy P1 (u, , u2 ) _ P2 (u, - U2 ).

Hence Slepian's Lemma in Leadbetter et al. (1982, p. 156) implies that the supremum of

the Gaussian process with covariance function p, is stochastically less than that of the

stationary Gaussian process with autocovariance function P2. Then, applying Theorem

8.2.7 in Leadbetter et al. (1982, p. 171) for the stationary process with A2 = -P (0) = 1,

we have the supremum over the range 0 < u < Vk to be

M = (log k)1/2 + X - log(2 r) + o,(logk) 1
/
2

(log k)1/2  (log k)1/ 2

where

P{X < z} = exp(-e-').

We conclude with a proof of

LEMMA 2. p1(Ul,U2)_>p2(Ul-U 2) for 0<U l,O<u2

Proof: First we note that p, > 0 and that

P ( U 2) 2 U-u2)[1  _ e- /  -e-' l - e--21.
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Hence it suffices to prove that

(1-ueu.) 2 > (1--)(1-u )

or lo( 1_Ugl2 e ]

Iog(l - e-" "' ) e ) +Iog(l - e
~( 1 i2 ~ 2

If we let u = exp(y), it suffices to show that

g(y) = log h(y) = log[1 - exp(- exp(2y))]

is a concave function of y or that g" (y) < 0. We calculate

h'(y) = 2exp(2y) exp[- exp(2y)] > 0

h"(y) = 2h'(y)[1 - exp(2y)]

g'(y) = h'(y)lh(y)

and

g"(Y) = [ (Y) ] +

If y > 0, h" (y) < 0 and g" (y) is clearly negative. For y < 0, we must show that

[h'(y)J 2 > h(y)h"(y)

or

2exp(2y) exp(- exp(2y)) _ 2(1 - exp(2y))(1 - exp(- exp(2y))

exp(2y) + exp(- exp(2y)) > 1

Let v = exp(2y). Then we need

e-'+v-l>0 for 0<v<1.

In fact it is well know that the above inequality holds for all v.
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Table 1. Quantiles of tn(2L)

q 0.25 0.50 0.75 0.90 0.95 0.99 .999 k n 8 p - a p*

asymptotic; 0 .06 .80 2.2 3.4 6.3 10.7 2 cc 1
0 .17 1.07 2.5 3.7 6.5 10.8 4 c 1
0 .26 1.26 2.9 4.3 7.2 11.2 6 c 1

.01 .42 1.56 3.2 4.5 7.4 12.0 10 c 1

.30 1.12 2.54 4.3 5.8 8.9 13.4 40 co 1
asymptotic;
two-sides .23 .77 1.85 3.4 4.6 7.6 12.0 2 c 2

.56 1.34 2.75 4.5 5.8 9.1 14.8 10 c 2
finite
sample; 0 0 .6 2.0 3.1 5.9 8.6 2 40 1

0 0 .8 2.0 3.5 5.8 8.6 2 20 1
0 .1 .9 3.0 4.4 7.0 11.8 10 40 1
0 0 .7 2.4 3.8 6.5 10.1 10 20 1
0 .1 .9 2.4 3.6 6.8 11.7 40 40 1
0 0 .8 2.2 3.4 6.4 11.6 40 20 1

mixed;
asymptotic; 0 .4 1.6 3.3 4.5 7.8 14.4 3:10 1/3 1

0 .4 1.6 3.2 4.5 7.9 11.9 3:10 3/1 1
mixed;
finite sample; 0 .1 .8 2.4 4.2 6.5 13.7 3:10 10,30

0 .1 .8 2.3 3.5 6.7 11.6 3:10 30,10
noncentral;
asymptotic; .5 1.8 4.0 6.8 8.7 13.3 19.4 2 c 1 .30 .2

.6 2.1 4.4 7.4 9.4 13.9 22.7 2 c 1 .15 .2
3.3 6.2 10.0 14.4 17.2 23.7 31.9 2 c 1 .30 .4
3.9 7.1 11.1 15.4 18.2 25.3 33.4 2 c 1 .15 .4

10.1 14.6 20.2 25.9 29.5 36.7 47.6 10 co 1 .30 .2
59.5 70.3 82.0 92.7 100 114 128 10 c 1 .15 .2
45.1 54.8 65.4 75.9 82.5 96 111 10 c 1 .30 .4
254 277 300 322 336 363 396 10 c 1 .15 .4

noncentral;
finite sample; .5 1.7 3.9 6.4 8.8 12.9 19.3 2 40 1 .30 .2 .32

.3 1.4 3.7 6.3 8.3 12.1 18.2 2 20 1 .30 .2 .45

.5 1.9 4.2 7.4 9.3 13.8 21.6 2 40 1 .15 .2 .18

.3 1.7 3.8 6.6 8.4 13.5 18.4 2 20 1 .15 .2 .26
3.1 5.8 8.4 13.4 16.4 21.9 29.2 2 40 1 .30 .4 .63
2.6 5.8 8.6 12.6 15.4 20.5 28.3 2 20 1 .30 .4 89
3.1 6.0 9.9 13.9 17.1 23.8 30.6 2 40 1 .15 .4 .36
3.5 5.9 9.9 14.2 16.4 22.2 31.0 2 20 1 .15 .4 .51
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Table 1. Quantiles of in(2L) cont.

q 0.25 0.50 0.75 0.90 0.95 0.99 .999 k n a p -0* a p*

5.1 9.1 14.4 19.9 23.6 30.8 43.7 10 40 1 .30 .2 .32
4.8 8.4 13.4 18.7 22.7 30.5 40.4 10 20 1 .30 .2 .45
9.9 16.5 24.5 33.4 39.2 52.1 68.9 10 40 1 .15 .2 .18
7.7 14.4 21.7 30.3 35.7 47.7 60.6 10 20 1 .15 .2 .26

21.5 29.0 37.7 46.0 51.6 62.7 78.1 10 40 1 .30 .4 .63
20.5 27.1 34.6 42.1 46.8 57.8 72.0 10 20 1 .30 .4 .89
33.7 45.3 58.6 72.0 80.8 97.8 114 10 40 1 .15 .4 .36
27.6 38.0 50.2 61.6 69.0 84.1 98.7 10 20 1 .15 .4 .51

89 111 137 161 176 206 245 20 40 1 .15 .4 .36
156 192 232 267 291 331 383 40 20 1 .15 .4 .51

restricted;
asymptotic; 0 .35 .72 2.1 3.3 6.2 10.5 2 oo 1 .60

0 .12 .61 1.9 3.1 5.9 10.1 2 o 1 .75
0 .32 1.4 3.0 4.3 7.6 12.9 10 0c 1 .60
0 .12 .97 2.5 3.7 6.9 10.8 10 co 1 .75

.17 .86 2.2 4.0 5.3 8.5 12.3 40 co 1 .60
0 .40 1.5 3.2 4.5 8.0 12.3 40 co 1 .75

restricted;
finite sample; 0 0 .6 2.0 3.1 6.6 10.8 2 40 1 .60

0 0 .8 2.0 3.6 6.0 10.1 2 20 1 .75
0 0 .5 2.0 3.0 5.7 13.0 2 40 1 .60
0 0 .5 2.0 2.9 5.9 9.4 2 20 1 .75
0 0 .1 1.5 2.9 6.6 12.0 40 40 1 .60
0 0 .1 1.4 2.5 6.0 10.3 40 20 1 .75
0 0 0 0 .3 3.2 7.4 40 40 1 .60
0 0 0 0 .6 4.0 8.5 40 20 1 .75

chi-square;
with 1 df .10 .46 1.3 2.7 3.8 6.6 10.8
with 2 df .58 1.39 2.8 4.6 6.0 9.2 13.8

(.01)[q(1 - q)] 1 /2 .004 .005 .004 .003 .002 .001 .0004
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Table 2

Kullback-Leibler Information K(Go,0) and

Standard Deviation SD = [V(9 0 )] 1/ 2 of 2L

p .300 .300 .300 .300 .150 .150 .150 .150
-01 .032 .045 .063 .089 .032 .045 .063 .089

k

2 KL .017 .033 .066 .131 .019 .037 .072 .141
2 SD .185 .260 .362 .499 .198 .278 .389 .537

6 KL .057 .108 .205 .395 .092 .163 .288 .51
6 SD .364 .502 .682 .892 .511 .691 .921 1.20

10 KL .105 .193 .354 .66 .204 .34 .57 .94
10 SD .526 .711 .942 1.18 .880 1.14 1.46 1.82

20 KL .253 .44 .76 1.34 .58 .90 1.40 2.17
20 SD .924 1.20 1.51 1.77 1.88 2.32 2.81 3.30

40 KL .63 1.01 1.64 2.73 1.50 2.21 3.27 4.85
40 SD 1.72 2.12 2.52 2.69 3.94 4.68 5.45 6.09

For comparisons with the noncentral entries of Table 1
we note 01 and a for the following values of n

n 40 20 40 20 40 20 40 20
-01 .200 .200 .400 .400 .200 .200 .400 .400
,' .316 .447 .632 .894 .181 .256 .361 .511
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ABSTRACT

A problem of interest in genetics is that of testing whether a mixture of two binomial
distributions Bj (k, p) and B, (k, 1/2) is simply the pure distribution B, (k, 1/2). This
problem arises in determining whether we have a genetic marker for a gene responsible
for a heterogeneous trait, that is a trait which is caused by any one of several genes. In
that event we would have a nontrivial mixture involving 0 < p < 0.5 where p is a
recombination probability.

Standard asymptotic theory breaks down for such problems which belong to a class
of problems where a natural parameterization represents a single distribution, under the
hypothesis to be tested, by infinitely many possible parameter points. That difficulty
may be eliminated by a transformation of parameters. But in that case a second problem
appears. The regularity conditions demanded by the applicability of the Fisher Information
fails when k > 2. We present an approach where use is made of the Kullback Leibler
information, of which the Fisher information is a limiting case.

Several versions of the binomial mixture problem are studied. The asymptotic analysis
is supplemented by the results of simulations. It is shown that as n -- oo, the asymptotic
distribution of twice the logarithm of the likelihood ratio corresponds to the square of the
supremum of a Gaussian stochastic process with mean 0, variance 1 and a well behaved
covariance function. As k -+ oo this limiting distribution grows stochastically as the
square root of log k.
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